

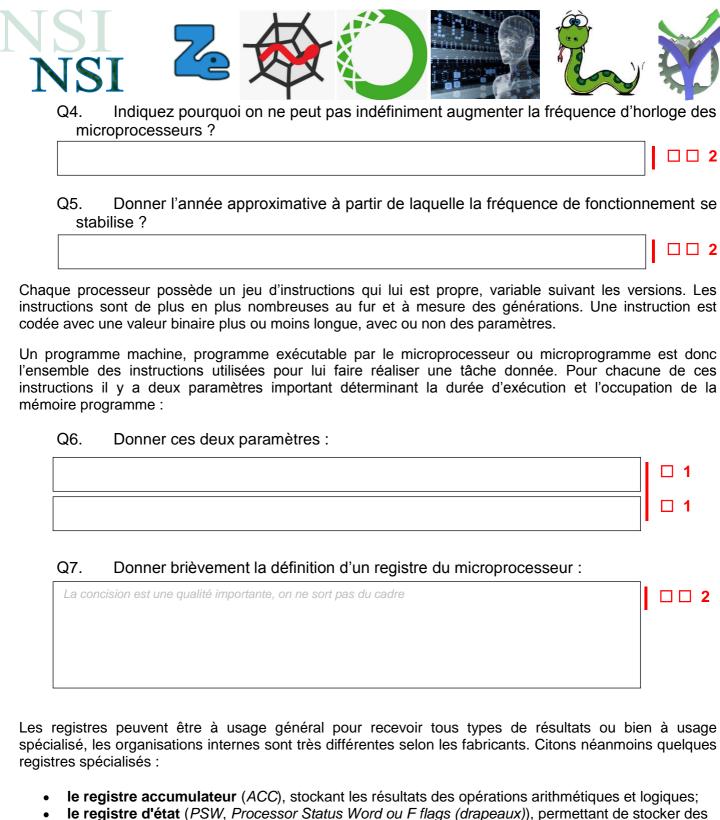
Introduction à l'architecture des processeurs

Nom:	Note:	/40	/20
Commentaire :			

- Étude d'un article présentation fonctionnement de du des microprocesseurs d'aujourd'hui, article paru dans la revue GNU/Linux N°218.
- 1.1 Les fondamentaux

Rappel de binaire. Donner le nombre de valeurs possibles avec : Q1.

Un bit :		□ 1
Un octet (8 bits, byte):		□ 1
Un mot (16 bits, word) :		□ 1

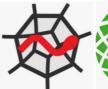

Q2. Comment s'appelle les groupes de signaux qui interconnectent la RAM, la ROM, les entrées/sorties Input/Output au processeur :

	Bus d'adresses		
CPU	Bus de données Bus de contrôle RAM ROM I/O Autre	Un seul mot	🗆 1

Q3. Donner la signification et l'usage des acronymes suivants :

<u>Acronyme</u>	<u>Signification</u>	Usage le plus courant	
RAM			□ 1
ROM			□ 1
I/O			□ 1

L'horloge fixe la rapidité du processeur. Elle définit la plus petite quantité de temps dénommée un cycle qui déterminera la vitesse de celui-ci.



- le registre d'état (PSW, Processor Status Word ou F flags (drapeaux)), permettant de stocker des indicateurs sur l'état du système (retenue, dépassement, etc.);
- **le compteur ordinal** (CO ou PC pour Program Counter), contenant l'adresse de la prochaine instruction à traiter:
- le pointeur de pile (SP, Stack Pointeur).

Q8.	Donner brièvement la définition d'un jeu d'instruction d'un processeur :	
La cor	cision est une qualité importante, on ne sort pas du cadre	

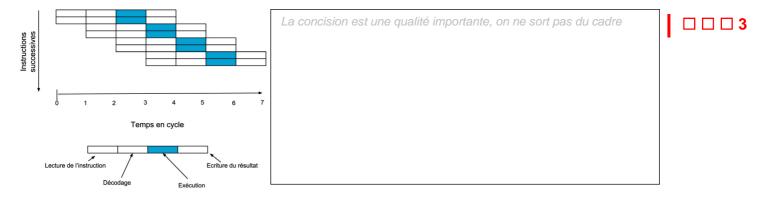
NSI NSI

Q9. Donner brièvement le rôle d'une interruption pour un processeur :

La concision est une qualité importante, on ne sort pas du cadre	

1.2 La virtualisation

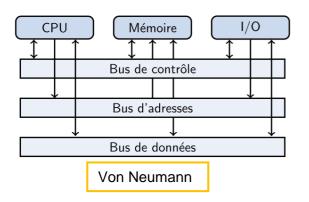
Q10. Qu'-est-ce que la virtualisation?

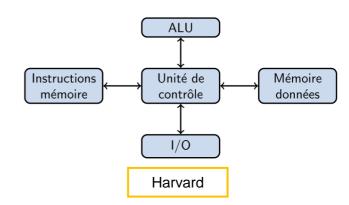

□□2

1.3 L'accès à la mémoire

Q11. Commenter la figure ci-dessous (Fig. 18 du document) :

Q12. Commenter la figure ci-dessous (Fig. 25 du document) :


2 Compléments


A l'aide d'une courte recherche sur internet répondre aux questions ci-dessous.

2.1 Architecture de Von Neumann et Harvard

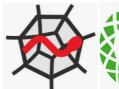
Une architecture décrit de manière conceptuelle et pratique l'organisation du processeur et des ressources dont il a besoin pour fonctionner à savoir essentiellement la mémoire de programme contenant les micros-instructions à suivre pour le bon déroulé du programme, la mémoire de données et les accès aux entrées-sorties le reliant au monde extérieure et aux périphériques, circuits etc.....

Deux principales architectures existent l'architecture Harvard et l'architecture de Von Neumann, elles sont représentées ci-dessous :

Q13. Principale différence entre les deux architectures ?

La concision est une qualité importante, on ne sort pas du cadre]	2

Q14. Avantage de l'architecture de Von Neumann vs Harvard?


La concision est une qualité importante, on ne sort pas du cadre	□ □ 2

Q15. Avantage de l'architecture de Harvard vs Von Neumann?

La concision est une qualité importante, on ne sort pas du cadre	□ □ 2

2.2 Architecture RISC ou CISC

Les processeurs peuvent également se comparer en fonction de leur plus ou moins grand nombre d'instructions, il y a deux grandes familles de microprocesseurs les RISC et CISC.

Q16. Relier ensemble qui avec qui avec des traits :

□□□3

CISC (Complex Instruction Set)

Beaucoup d'instructions

o Beaucoup de registres

• Beaucoup de modes d'adressage

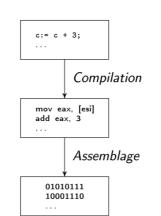
o Peu d'instructions

o Peu de registres

2.3 Le langage évolué vs langage machine

RISC (Reduced Instruction Set)

Dans le monde des processeurs il y a différents niveaux de langage. Le processus pour passer d'un langage évolué au langage machine est décrit ci-dessous¹ :


Langage haut niveau (Ada, C++, etc.)

Langage d'assemblage

Mnémoniques associées au langage machine

Langage machine

Binaire en mémoire qui forme un exécutable

Q17. Définir le langage évolué :

Q18. Définir le langage machine :

Voilà un exemple de programme en langage machine pour un processeur de la famille 80x86 AX est le nom de l'un des registres du processeur.

A1 01 10 03 06 01 12 A3 01 14

Ce programme additionne le contenu de deux cases mémoires et range le résultat dans une troisième...

opcode	Symbole	octets	
A1	MOV AX, [adr]	3	$AX \leftarrow contenu \; de \; l'adresse \; \mathit{adr}$
03 06	ADD AX, [adr]	4	$AX \leftarrow AX + contenu \ de \ l'adresse \ \mathit{adr}$
А3	MOV [adr], AX	3	range AX à l'adresse adr
	A1 03 06	A1 MOV AX, [adr] 03 06 ADD AX, [adr]	A1 MOV AX, [adr] 3 03 06 ADD AX, [adr] 4

Transcription du programme :

A1 01 10	MOV AX, [0110]	Charge AX avec le contenu de 0110
03 06 01 12	ADD AX, [0112]	Ajouter le contenu de 0112 à AX
A3 01 14	MOV [01 14], AX	Ranger AX à l'adresse 0114

Q19. Combien d'octets de programme ?

] 🗆 1
--	--------

Q20. Combien de micro-instructions exécutées ?

		1

¹ D'après Eric Ramat, Université du Littoral - Côte d'Opale, Architecture et Langage Assembleur